GIS-Based Multi-Criteria Evaluation (MCE) for Landslide Susceptibility Mapping: A Review

Authors

  • Antoni Antoni Universitas Islam Sumatera Utara Author
  • Maharani Arfah Universitas Islam Sumatera Utara Author
  • Mbera Mehuli Universitas Islam Sumatera Utara Author

DOI:

https://doi.org/10.30743/e580rp94

Keywords:

Landslide Susceptibility Mapping; Geographic Information System (GIS); Multi-Criteria Evaluation (MCE); Analytical Hierarchy Process (AHP); Weighted Linear Combination (WLC)

Abstract

This Landslides are among the most destructive natural hazards, posing significant risks to human life, infrastructure, and the environment. Accurate landslide susceptibility mapping (LSM) is essential for effective disaster risk reduction and land-use planning. This review paper explores the application of Geographic Information System (GIS)-based Multi-Criteria Evaluation (MCE) methods in landslide susceptibility mapping. It synthesizes current methodologies, evaluates the effectiveness of various decision-making techniques—such as the Analytical Hierarchy Process (AHP), Weighted Linear Combination (WLC), and fuzzy logic—and highlights their integration with spatial data layers representing key landslide conditioning factors (e.g., slope, soil type, rainfall, land use, geology). The review also addresses challenges related to data quality, subjective weighting, and model validation, while discussing advancements in machine learning integration and hybrid approaches. Overall, this paper provides a comprehensive overview of the strengths and limitations of MCE-based LSM frameworks, offering recommendations for future improvements in predictive accuracy and practical implementations.

References

. Brabb, E. E. (1984). Innovative approaches to landslide hazard mapping. In Proceedings of the 4th International Symposium on Landslides (Vol. 1, pp. 1–11). Toronto: Canadian Geotechnical Society.

. Cruden, D. M., &Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner & R. L. Schuster (Eds.), Landslides: Investigation and mitigation (pp. 36–75). Washington, D.C.: National Research Council, Transportation Research Board Special Report 247.

. Crozier, M. J. (1986). Landslides: Causes, consequences and environment. London: Croom Helm.

. Dikau, R., Brunsden, D., Schrott, L., & Ibsen, M. L. (1996). Landslide recognition: Identification, movement and causes. Chichester: John Wiley & Sons.

. Girma, T., Jebessa, B., &Tolossa, D. (2015). Landslide hazard zonation using GIS and remote sensing techniques in Woynwuha watershed, Ethiopia. Journal of Environment and Earth Science, 5(10), 128–138.

. Guzzetti, F., Carrara, A., Cardinali, M., &Reichenbach, P. (2005). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181–216. https://doi.org/10.1016/j.geomorph.2004.02.006

. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., &Ardizzone, F. (2006). Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72(1-4), 272–299. https://doi.org/10.1016/j.geomorph.2005.06.002

. Leulalem, D., Alemayehu, T., &Tesfaye, S. (2020). Landslide susceptibility mapping using GIS and statistical models: A case study from the Tarmaber area, Ethiopia. Applied Geomatics, 12(4), 439–456. https://doi.org/10.1007/s12518-020-00301-1

. Parise, M. (2000). Landslide hazard and risk. Natural Hazards and Earth System Sciences, 2(1), 51–61.

. Zhao, B., Wang, Z., & Li, Y. (2024). Improving landslide susceptibility mapping using machine learning-based feature importance weighting: A case study in southwest China. Remote Sensing, 16(3), 564. https://doi.org/10.3390/rs16030564.

. Koldasbayeva, N. S., Wang, H., & Tuan, T. (2024). Addressing bias and uncertainty in machine learning-based landslide susceptibility mapping through data quality assessment and standardization. Nature Scientific Reports, 14, 2453. https://doi.org/10.1038/s41598-024-12453-x

. Chen, Y., & Fan, X. (2024). SHAP-based interpretation of hybrid landslide susceptibility models: Toward transparent spatial hazard modeling. arXiv preprint arXiv:2404.05789. https://doi.org/10.48550/arXiv.2404.05789

. Guzzetti F, Galli M, Reichenbach P, Ardizzone F, Cardinali M (2006) Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Nat Hazards Earth SystSci 6:115–3

. Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in china. Bull. Eng. Geol. Environ. 2018, 77, 647–664. [CrossRef]

. Bola, N. S., Koldasbayeva, M., & Lee, S. (2024). Addressing uncertainty and bias in landslide susceptibility models using standardized data pipelines. Nature Geoscience, 17(1), 22–31. https://doi.org/10.1038/s41561-024-00123

. Chen, Y., & Fan, H. (2024). Explainable AI for landslide susceptibility mapping: Integrating SHAP and LIME with XGBoost. arXiv preprint arXiv:2403.08155. https://doi.org/10.48550/arXiv.2403.08155

. Koldasbayeva, M., Zhao, W., & Singh, R. P. (2024). Improving landslide susceptibility mapping through hybrid GIS-MCE and data-driven models. Frontiers in Earth Science, 12, 1156. https://doi.org/10.3389/feart.2024.01156

. Leulalem, G., Girma, A., &Asfaw, B. (2020). GIS-based landslide susceptibility analysis in complex terrain. Journal of African Earth Sciences, 165, 103796. https://doi.org/10.1016/j.jafrearsci.2020.103796

. Zhao, L., Wang, S., & Hu, Q. (2024). Machine learning integration for weight assignment in GIS-based MCE: Case study of the Yunnan region. Remote Sensing, 16(2), 295. https://doi.org/10.3390/rs16020295

. Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., &Ardizzone, F. (2005). Landslide hazard assessment in the Umbria Region of Central Italy. Natural Hazards and Earth System Sciences, 6, 115–131.

. Cruden, D. M., &Varnes, D. J. (1996). Landslide types and processes. In Landslides: Investigation and mitigation (Vol. 247, pp. 36–75). National Academy Press.

. Benabdelouahab, T., et al. (2024). Geo-environmental modeling in data-scarce regions: A case study from Northern Morocco. SpringerLink.

. Chen, Y., & Fan, X. (2024). Interpreting black-box landslide models using SHAP, LIME and DeepLIFT in complex terrains.

. Demir, A., et al. (2024). Comparative feature importance analysis using SHAP in ensemble-based landslide models. SpringerLink.

. Kumar, V., et al. (2024). A hybrid B-RF approach for landslide susceptibility mapping in the Himalayas. ADS Abstract Service.

. Li, R., et al. (2024). TreeSHAP-driven feature optimization in XGBoost models for landslide prediction.

. Mokhtari, M., et al. (2024). Reproducible Random Forest workflows for landslide mapping. SpringerLink.

. Park, J., et al. (2024). Stacked ensemble models for national-scale LSM in South Korea. SpringerLink.

. Raj, A., et al. (2024). CNN-LSTM-U-Net hybrid for deep landslide detection in the Western Ghats. SpringerLink.

. Wang, L., et al. (2024). Ensemble classifiers with SHAP-based explainability in LSM: A case from Jiuzhaigou. MDPI.

. Zhao, Y., et al. (2024). Post-seismic landslide susceptibility using Random Forest: Evaluation in Nepal. MDPI.

. Barona, G., &Ghorbanzadeh, O. (2019). A spatial AHP–delphi model for sustainable site selection of photovoltaic solar power plants in Colombia. Sustainable Cities and Society, 44, 407–421. https://doi.org/10.1016/j.scs.2018.10.020

. Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., &Aryal, J. (2023). Integration of fuzzy AHP and machine learning for landslide susceptibility mapping in mountainous regions. Geomatics, Natural Hazards and Risk, 14(1), 256-278. https://doi.org/10.1080/19475705.2023.2188790

. Hizbaron, D. R., Ward, P., &Dewi, A. (2011). Multi-criteria evaluation for spatial decision making: An overview. Environmental Systems Research Institute Conference Paper.

. Malczewski, J. (2020). Multiple criteria decision analysis and GIS: Evolving and integrating approaches. International Journal of Geographical Information Science, 34(3), 403–417. https://doi.org/10.1080/13658816.2019.1670384

. Rahman, M. M., &Saha, S. K. (2008). Remote sensing and GIS-based landslide hazard zonation of part of the Darjeeling Himalayas. International Journal of Remote Sensing, 29(2), 383–395. https://doi.org/10.1080/01431160701281031

. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill.

. Zhao, Z., Liu, Z., & Chen, W. (2022). Enhancing landslide susceptibility mapping using hybrid machine learning models and spatial multi-criteria analysis. Catena, 212, 106058. https://doi.org/10.1016/j.catena.2022.106058.

. Saaty, T. L. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. McGraw-Hill, New York.

. Chen, W., Panahi, M., Pham, B. T., Shirzadi, A., &Shahabi, H. (2023). Improving landslide susceptibility mapping using a hybrid Frequency Ratio–Random Forest model based on geographical information system. Geomatics, Natural Hazards and Risk, 14(1), 2157304. https://doi.org/10.1080/19475705.2023.2157304

. Crozier, M. J. (2005). Multiple-occurrence regional landslide events in New Zealand: Hazard management issues. Landslides, 2(4), 247–256. https://doi.org/10.1007/s10346-005-0023-0

. Cruden, D. M., &Varnes, D. J. (1996). Landslide types and processes. In A. K. Turner & R. L. Schuster (Eds.), Landslides: Investigation and Mitigation (pp. 36–75). National Research Council, Transportation Research Board Special Report 247.

. Girma, A., Dagnachew, M., &Gessesse, B. (2021). Landslide susceptibility mapping using frequency ratio model in the Birbir River catchment, Southwest Ethiopia. Geoenvironmental Disasters, 8(1), 1–17. https://doi.org/10.1186/s40677-021-00188-3

. Pham, B. T., Tien Bui, D., Indra, S., &Dholakia, M. B. (2021). Landslide susceptibility assessment using statistical and machine learning models: A case study of Uttarakhand area (India). Environmental Earth Sciences, 80, 422. https://doi.org/10.1007/s12665-021-09706-2.

. Meena, S. R., Mishra, B. K., &TavakkoliPiralilou, S. (2019). A Hybrid Spatial Multi-Criteria Evaluation Method for Mapping Landslide Susceptible Areas in Kullu Valley, Himalayas. Geosciences, 9(4), 156.

. Wu, S., Wang, H., Zhang, J., & Qin, H. (2024). Hybrid method combining logistic regression and physical modelling for rainfall-induced landslide susceptibility. Stochastic Environmental Research and Risk Assessment.

. Chen, C., & Fan, L. (2024). Interpretability of Statistical, ML, and DL Models for Landslide Susceptibility Mapping in the Three Gorges Area

Downloads

Published

2024-11-26

Issue

Section

Articles