Advancements in Sustainable Clutch Material Design: Ptimizing Thermal Resilience and Friction Dynamics for High-Performance Applications

Authors

  • Junaidi Junaidi Universitas Harapan Medan Author
  • Suhardi Napid Universitas Islam Sumatera Utara Medan Author
  • Husin Ibrahim Politeknik Negeri Medan Author

DOI:

https://doi.org/10.30743/p9v0t388

Keywords:

Sustainable Clutch Materials; Thermal Resilience; Friction Stability; Composite Materials

Abstract

The rapid advancement of automotive technology necessitates high-performance clutch materials capable of enduring extreme thermal and mechanical loads. Traditional materials, such as asbestos composites, have been widely used in clutch applications for their wear resistance. However, their environmental and health risks drive the search for eco-friendly alternatives. This study investigates the properties of advanced composite materials, particularly those reinforced with carbon fibers and ceramics, to enhance clutch durability, thermal stability, and environmental sustainability. Through a series of thermal cycling and mechanical load tests, the research assesses the thermal resilience and friction stability of selected materials. Key material properties, such as Young’s modulus, thermal expansion, and thermal conductivity, were measured to understand how these composites manage heat dissipation and resist wear under high-stress conditions. Finite Element Analysis (FEA) further models the thermal and mechanical behavior of these materials, providing insights into their performance under simulated clutch engagement cycles. Results indicate that carbon fiber-reinforced composites exhibit superior thermal management and frictional stability compared to conventional materials, aligning well with the demands of modern automotive applications. However, challenges remain in balancing cost and scalability, which are critical for large-scale adoption. This study contributes to the ongoing development of sustainable clutch materials, aiming to bridge the gap between performance requirements and environmental objectives.

References

. Kim, S. J., & Jang, H. (2010). "Development of Eco-Friendly Brake Friction Materials Using Organic Fibers." Journal of Materials Processing Technology, 201, 1-3. DOI: 10.1016/j.jmatprotec.2010.04.003

. Zhou, Y., Zhang, L., & Wang, Y. (2012). "Thermal Conductivity and Mechanical Properties of Carbon Fiber-Reinforced Ceramic Matrix Composites." Composites Science and Technology, 72(14), 201-215. DOI: 10.1016/j.compscitech.2012.05.012.

. Voevodin, A. A., & Zabinski, J. S. (2015). "Wear and Friction Characteristics of Nanostructured Coatings for Automotive Applications." Surface and Coatings Technology, 284, 1-8. DOI: 10.1016/j.surfcoat.2015.03.023.

. Ayatollahi, M. R., Shadlou, M., & Shokrieh, M. (2013). "Influence of Fiber Orientation on the Thermal and Mechanical Properties of Composite Materials." Materials & Design, 50, 401-410. DOI: 10.1016/j.matdes.2013.05.002.

. Kim, J. K., & Mai, Y. W. (2016). "Advancements in High-Temperature Polymer Matrix Composites for Automotive Applications." Polymer Composites, 37(5), 1150-1160. DOI: 10.1002/pc.23987.

. Liew, K., Ansari, M. N. M., & Bakar, A. A. A. (2011). "Tribological Performance of Eco-Friendly Brake Friction Materials." Wear, 271(9-10), 2054-2063. DOI: 10.1016/j.wear.2011.01.001.

. Park, S. S., Lee, J. H., & Kim, H. S. (2014). "Thermal Stability and Frictional Behavior of Hybrid Composite Materials." Journal of Composite Materials, 48(20), 2521-2530. DOI: 10.1177/0021998313494421.

. Bhuiyan, M. S. H., Islam, M. A., & Rahman, M. A. (2009). "Development of Asbestos-Free Friction Materials Using Natural Fiber Reinforcements." Materials Science and Engineering: A, 506(1-2), 95-

a. 100. DOI: 10.1016/j.msea.2009.05.003.

. Sinha, S. K., & Srivastava, A. K. (2017). "Effect of Nano-Additives on the Thermal Conductivity and Frictional Properties of Brake Pad Materials." Tribology International, 109, 210-220. DOI: 10.1016/j.triboint.2017.01.001.

. Pointner-Gabriel, L., Forleo, C., Voelkel, K., Pflaum, H., & Stahl, K. (2022). "Investigation of the Drag Losses of Wet Clutches at Dip Lubrication." SAE Technical Paper, 2022-01-0650. DOI: 10.4271/2022- 01-0650.

. Friedrich, O. (1995). "Leerlaufuntersuchungen zum thermischen Verhalten nasslaufender Lamellenkupplungen in dynamisch belasteten Schiffsgetrieben." University of the Federal Armed Forces Hamburg. [Dissertation].

. Lloyd, F.A. (1974). "Parameters contributing to power loss in disengaged wet clutches." SAE Technical Paper 740676. DOI: 10.4271/740676.

. Schade, C.W. (1971). "Effects of transmission fluid on clutch performance." SAE Technical Paper 710734. DOI: 10.4271/710734.

. Pointner-Gabriel, L., Schermer, E., Schneider, T., & Stahl, K. (2023). "Experimental analysis of oil flow and drag torque generation in disengaged wet clutches." Scientific Reports. DOI: 10.1038/s41598- 023-43695-6.

. Leister, R., Fuchs, T., Mattern, P., & Kriegseis, J. (2021). "Flow-structure identification in a radially grooved open wet clutch by means of defocusing particle tracking velocimetry." Experimental Fluids,

(2). DOI: 10.1007/s00348-020-03116-0.

. Yuan, S., Guo, K., Hu, J., & Peng, Z. (2010). "Study on aeration for disengaged wet clutches using a two-phase flow model." Journal of Fluid Engineering, 132(11). DOI: 10.1115/1.4002874.

. Kitabayashi, H., Li, C.Y., & Hiraki, H. (2003). "Analysis of the various factors affecting drag torque in multiple-plate wet clutches." SAE Technical Paper 2003-01-1973. DOI: 10.4271/2003-01-1973.

. Fish, R.L. (1991). "Using the SAE #2 machine to evaluate wet clutch drag losses." SAE Technical Paper 910803. DOI: 10.4271/910803.

. Neupert, T., Benke, E., & Bartel, D. (2018). "Parameter study on the influence of a radial groove design on the drag torque of wet clutch discs." Tribology International, 119, 809–821. DOI: 10.1016/j.triboint.2017.12.005.

. Pointner-Gabriel, L., Forleo, C., Voelkel, K., Pflaum, H., & Stahl, K. (2022). "Investigation of the drag losses of wet clutches at dip lubrication." SAE Technical Paper, 2022-01-0650. DOI: 10.4271/2022-01-0650.

. Pahlovy, S. A., Mahmud, S. F., Kubota, M., Ogawa, M., & Takakura, N. (2016). "New development of a gas cavitation model for evaluation of drag torque characteristics in disengaged wet clutches." SAE International Journal of Engines, 9(3), 1910-1915. DOI: 10.4271/2016-01-1019.

. Hilpert, C. R. (1969). "Gyroscopically induced failure in multiple disc clutches, its causes, characteristics, and cures." SAE Transactions, 690066, 354-371. DOI: 10.4271/690066.

. Hou, S., Hu, J., & Peng, Z. (2017). "Experimental investigation on unstable vibration characteristics of plates and drag torque in open multiplate wet clutch at high circumferential speed." Journal of Fluids Engineering, 139(11), 111103-1-11. DOI: 10.1115/1.4037384.

. Chen, M., & Ma, B. (2011). "Fault diagnosis of wet-shift clutch based on STFT and wavelet."

a. Advanced Materials Research, 301, 1560-1567. DOI: 10.4028/www.scientific.net/AMR.301-303.1560.

. Zak, G., Wylomanska, A., & Zimroz, R. (2018). "Local damage detection method based on distribution distances applied to time-frequency map of vibration signal." IEEE Transactions on Industry Applications, 54(5), 4091-4103. DOI: 10.1109/TIA.2018.2846008.

. Klein, R., Masad, E., Rudyk, E., & Winkler, I. (2020). "Bearing diagnostics using image processing methods." Procedia Engineering, 137, 2395-2401. DOI: 1

Downloads

Published

2025-08-10

Issue

Section

Articles