Regression Model Analysis in Forecasting Logistics Transportation Performance at Belawan Port Terminal

Authors

  • Ekoliyono Wahyu Sumantri Universitas Potensi Utama Author
  • Dedy Hartama Sekolah Tinggi Tunas Bangsa Author
  • Lili Tanti Universitas Potensi Utama Author

DOI:

https://doi.org/10.30743/r85ct584

Keywords:

Regression Model; Predictive Modeling; Learning Rate; Stability; Logistics Transportation

Abstract

This study analyzes the performance of three regression models: Gradient Boosting Regressor (GBR), AdaBoost Regressor (ABR), and Support Vector Regressor (SVR) in the context of predicting the departure time of logistics vehicles at PT. Pelabuhan Belawan. The results show that GBR is optimal at learning rates between 0.05 and 0.07, with high accuracy but prone to overfitting. ABR shows good stability at higher learning rates, while SVR is the most stable model, consistent across a range of epsilon values. Although GBR excels in accuracy, SVR provides the best balance between performance and generalization ability, with delta metrics that are almost unchanged. The analysis shows that logistics vehicles depart early more often than on time or late, reflecting the sensitivity of the model to aggressive learning rate changes. These findings recommend SVR with a learning rate of 0.1 as the optimal model for prediction applications that require stability.

References

A. M. El-Habil, “An application on multinomial logistic regression model,” Pakistan J. Stat. Oper. Res., vol. 8, no. 2, 2012.

W. Xu, H. Peng, X. Zeng, F. Zhou, X. Tian, and X. Peng, “A hybrid modelling method for time series forecasting based on a linear regression model and deep learning,” Appl. Intell., vol. 49, no. 8, pp. 3002–3015, Aug. 2019.

M. Baak, R. Koopman, H. Snoek, and S. Klous, “A new correlation coefficient between categorical, ordinal and interval variables with Pearson characteristics,” Comput. Stat. Data Anal., vol. 152, 2020.

L. Huang, G. Xie, W. Zhao, Y. Gu, and Y. Huang, “Regional logistics demand forecasting: a BP neural network approach,” Complex Intell. Syst., vol. 9, no. 3, pp. 2297–2312, 2023.

S. Saragi, “Manajemen Konflik Terhadap Kasus Banjir Rop Akibat Reklamasi Pelabuhan Belawan,” Publik Reform J. Adm. …, no. 2, pp. 83–92, 2023.

N. Dhiwa, Humaira, Y. Junitasari, I. Asmana, Apsari, Nurftiani, S. Sahara, and E. Aulia, “Dampak Perubahan Teknologi Sistem Logistik di Pelabuhan,” J. Ilm. Wahana Pendidik., vol. 9, no. 14, pp. 273–289, 2023.

V. K. Ayu, W. W. Yunanda, and F. Nulhakim, “Strategi Meningkatkan Sistem Keamanan Di Daerah Perbatasan Dengan Jaringan Logistik yang Terintegras,” J. Kewarganegaraan, vol. 6, no. 1, pp. 1219–1233, 2022.

C. P. Ping et al., “Analisis Kinerja Logistik PT. Batara Indah Mulia Ke Luar Negeri,” J. Ilmu Komput. dan Bisnis, vol. 13, no. 2, pp. 187–198, 2022.

H. F. D. Siwu, “Permintaan Dan Penawaran Jasa Transportasi,” J. Pembang. Ekon. Dan Keuang. Drh., vol. 19, no. 6, pp. 114–122, 2019.

D. Jenderal Penguatan Riset dan Pengembangan, D. Wistiasari, G. Hasan, K. Yanti Limanda, and N. Ohanna, “Peran Supply Chain Management Terhadap Customer Retention Pada Pt. Kimia Farma, Tbk. 1,” J. Ilm. Mhs. Ekon. Manaj. TERAKREDITASI SINTA, vol. 4, no. 3, pp. 699–707, 2023.

K. Kundori and P. Pranyoto, “Implementasi Kebijakan Transportasi Laut dalam Rangka Pengembangan Sistem Logistik Nasional,” Maj. Ilm. Bahari Jogja, vol. 21, no. 1, pp. 52–60, 2023.

A. I. Karim and M. A. Anshori, “Analisis Pemilihan Rute Perjalanan Dari Dan Menuju Pulau Pasaran Berdasarkan Waktu Perjalanan,” TAPAK (Teknologi Apl. Konstr. J. Progr. Stud. Tek. Sipil, vol. 13, no. 1, p. 47, 2023.

C. Rohyana and C. Wulandari, “Analisis Efisiensi Biaya Operasional Menggunakan Pendekatan Forecasting (Studi Kasus Pt Pos Indonesia Kantor Cabang Garut),” L. J., vol. 4, no. 2, pp. 134–153, 2023.

Zurkiyah and S. Asfiati, “Analisis Tingkat Pelayanan Dermaga Pelabuhan Penumpang Teluk Nibung Asahan, Tanjung Balai Sumatera Utara,” Semnastek Uisu, pp. 248–252, 2021.

H. K. Pambudi, P. G. A. Kusuma, F. Yulianti, and K. A. Julian, “Prediksi Status Pengiriman Barang Menggunakan Metode Machine Learning,” J. Ilm. Teknol. Infomasi Terap., vol. 6, no. 2, pp. 100–109, 2020.

W. Kartikasari, D. Setiawan, and E. Fauziah, “Efektifitas Transportasi dan Lokasi Terhadap Distribusi Logistik di Wilayah Komando Armada I TNI-AL,” Rekayasa, vol. 14, no. 2, pp. 183–190, 2021.

K. Tsolaki, T. Vafeiadis, A. Nizamis, D. Ioannidis, and D. Tzovaras, “Utilizing machine learning on freight transportation and logistics applications: A review,” ICT Express, vol. 9, no. 3, pp. 284–295, 2023.

S. B. Nadkarni, G. S. Vijay, and R. C. Kamath, “Comparative Study of Random Forest and Gradient Boosting Algorithms to Predict Airfoil Self-Noise,” Eng. Proc., vol. 59, no. 1, 2023.

Anwar Sanusi, Chrystia Aji Putra, and Fawwaz Ali Akbar, “Implementation of ADABOOST Algorithm on C50 for Improving the Performance of Liver Disease Classification,” JEECS (Journal Electr. Eng. Comput. Sci., vol. 8, no. 2, pp. 93–102, 2023.

C. Piao, N. Wang, and C. Yuan, “Rebalance Weights AdaBoost-SVM Model for Imbalanced Data,” Comput. Intell. Neurosci., vol. 2023, pp. 1–26, 2023.

H. Muradi, A. Saefuddin, I. M. Sumertajaya, A. M. Soleh, and D. D. Domiri, “Support Vector Regression (Svr) Method for Paddy Growth Phase Modeling Using Sentinel-1 Image Data,” Media Stat., vol. 16, no. 1, pp. 25–36, 2023.

Z. Liu, K. Zhao, X. Liu, and H. Xu, “Design and optimization of haze prediction model based on particle swarm optimization algorithm and graphics processor,” Sci. Rep., vol. 14, no. 1, pp. 1–16, 2024.

Downloads

Published

2024-12-17

Issue

Section

Articles