SVM Optimization with Kernel Function for Sentiment Analysis on Social Media twitter (X) in AFC U23 Asian Cup Case Study

Authors

  • Hardi Prasetya Universitas Potensi Utama Author
  • Zakarias Situmorang Universitas Katolik Santo Thomas Author
  • Rika Rosnelly Universitas Potensi Utama Author

DOI:

https://doi.org/10.30743/wjxmmr59

Keywords:

Sentiment Analysis; SVM; Linier Kernel; Polynomial Kernel; RBF Kernel; Social

Abstract

This study aims to optimize the performance of the Support Vector Machine (SVM) in sentiment analysis on social media by using various kernel functions, namely linear, polynomial, and Radial Basis Function (RBF). The case study taken was a conversation related to the AFC Asian Cup U-23 taken from social media platforms. The data used in this study included three classes of sentiment: positive, neutral, and negative. The experimental results show that the linear kernel achieves the highest accuracy of 93.55% with an F1-score of 0.9296. The RBF kernel shows almost comparable performance with an accuracy of 90.05% and an F1-score of 0.8820. In contrast, the polynomial kernel showed lower performance with an accuracy of 80.65% and an F1-score of 0.7346. The results of the analysis using the confusion matrix show that linear kernels and RBF are more effective in classifying neutral and positive sentiment than polynomial kernels. This study confirms that the right selection of kernels in SVM greatly affects the accuracy and effectiveness of sentiment analysis. Linear kernels and RBFs have proven superior in handling complex sentiment analysis datasets, such as those related to the AFC U-23 Asian Cup. These findings can be used as a basis for further development in sentiment analysis applications across various domains.

References

Abdurrahman, G. (2023). Klasifikasi Kanker Payudara Menggunakan Algoritma SVM dengan Kernel RBF, Linier, dan Sigmoid. JUSTIFY: Jurnal Sistem Informasi Ibrahimy, 2(1), 74-80.

Ansori, Y., & Holle, K. F. H. (2022). Perbandingan metode machine learning dalam analisis sentimen Twitter. JUSTIN (Jurnal Sistem dan Teknologi Informasi), 10(4), 429-434.

Arsi, P., & Waluyo, R. (2021). Analisis sentimen wacana pemindahan ibu kota Indonesia menggunakan algoritma Support Vector Machine (SVM). J. Teknol. Inf. dan Ilmu Komput, 8(1), 147.

Aulia, T. M. P., Arifin, N., & Mayasari, R. (2021). Perbandingan Kernel Support Vector Machine (Svm) Dalam Penerapan Analisis Sentimen Vaksinisasi Covid-19. SINTECH (Science and Information Technology) Journal, 4(2), 139-145.

Darwis, D., Pratiwi, E. S., & Pasaribu, A. F. O. (2020). Penerapan Algoritma Svm Untuk Analisis Sentimen Pada Data Twitter Komisi Pemberantasan Korupsi Republik Indonesia. Jurnal Ilmiah Edutic: Pendidikan dan Informatika, 7(1), 1-11.

Dewi, T. A., & Mailoa, E. (2023). Perbandingan Implementasi Metode Smote Pada Algoritma Support Vector Machine (Svm) Dalam Analisis Sentimen Opini Masyarakat Tentang Mixue. Jurnal Indonesia Manajemen Informatika dan Komunikasi, 4(3), 849-855.

Fitriyah, N., Warsito, B., & Di Asih, I. M. (2020). Analisis Sentimen Gojek Pada Media Sosial Twitter Dengan Klasifikasi Support Vector Machine (SVM). Jurnal Gaussian, 9(3), 376-390.

Hartono, F., & Novitasari, D. (2019). Overfitting and Underfitting in Machine Learning. Prosiding Konferensi Ilmiah Nasional Teknologi Informasi, 9, 23-32.

Husada, H. C., & Paramita, A. S. (2021). Analisis Sentimen Pada Maskapai Penerbangan di Platform Twitter Menggunakan Algoritma Support Vector Machine (SVM). Teknika, 10(1), 18-26.

Idris, I. S. K., Mustofa, Y. A., & Salihi, I. A. (2023). Analisis Sentimen Terhadap Penggunaan Aplikasi Shopee Mengunakan Algoritma Support Vector Machine (SVM). Jambura Journal of Electrical and Electronics Engineering, 5(1), 32-35.

Jurafsky, D., & Martin, J. H. (2021). Speech and Language Processing (3rd ed. draft). Pearson.

Kelvin, K., Banjarnahor, J., Nababan, M. N., & Sinurat, S. H. (2022). Analisis perbandingan sentimen Corona Virus Disease-2019 (Covid19) pada Twitter Menggunakan Metode Logistic Regression Dan Support Vector Machine (SVM). Jurnal Sistem Informasi dan Ilmu Komputer Prima (JUSIKOM PRIMA), 5(2), 47-52.

Noviana, R., & Rasal, I. (2023). Penerapan Algoritma Naive Bayes Dan Svm Untuk Analisis Sentimen Boy Band Bts Pada Media Sosial Twitter. Jurnal Teknik dan Science, 2(2), 51-60.

Omnicore. (2023). Twitter by the Numbers: Stats, Demographics & Fun Facts. https://www.omnicoreagency.com/twitter-statistics/

Rahardjo, D., & Simatupang, N. (2021). Algorithms in Machine Learning. Jurnal Teknologi Informasi, 18(2), 67-82.

Saputra, A., & Wibowo, B. (2022). Data and Features in Machine Learning. Jurnal Ilmiah Teknologi Informasi, 12(3), 45-57.

Tineges, R., Triayudi, A., & Sholihati, I. D. (2020). Analisis sentimen terhadap layanan indihome berdasarkan twitter dengan metode klasifikasi support vector machine (SVM). Jurnal Media Informatika Budidarma, 4(3), 650-658.

Utami, D. S., & Erfina, A. (2021, September). Analisis Sentimen Pinjaman Online di Twitter Menggunakan Algoritma Support Vector Machine (SVM). In Prosiding Seminar Nasional Sistem Informasi dan Manajemen Informatika Universitas Nusa Putra (Vol. 1, pp. 299-305).

Wijaya, L., & Suryadi, H. (2020). Supervised and Unsupervised Learning. Buku Teks Machine Learning, Penerbit Informatika, Bandung.

Downloads

Published

2024-12-15

Issue

Section

Articles