Stability and Matching Techniques on Microwave Amplifier using Inhomogeneous Dielectric Resonator: Preliminary Study
DOI:
https://doi.org/10.30743/jazxfa91Keywords:
Stability; Matching Techniques; Dielectric Matching; Transistor; Microwave Amplifier; Dielectric ResonatorAbstract
Stability and matching techniques on microwave amplifier have been an important consideration to maintain the required performances, such as high power for the high-power amplifier and low noise for low noise amplifier. Simultaneously, the issues of the stability need more attention to avoid the presence of the oscillations. Typically, the stability factor and matching components of the microwave amplifier are frequency dependent. Thus, a frequency tunable mechanism is required to ascertain that frequency of the microwave amplifier resides within the stable region. The dielectric resonator is incorporated as the frequency tunable mechanism that implemented to overcome this issue. The characteristics of the dielectric resonator are evaluated on their physical parameter and material with different topologies of the parallel microstrip lines. This includes the spacing and curves configuration and the orientation of angular position for the dielectric resonator, especially for the multi-permittivity dielectric resonator. Regarding the preliminary study, the angular position of the multi-permittivity dielectric resonator does not influence the stability performances of microwaves amplifier, especially on the resonant frequency. The obtained best configuration of proposed dielectric resonator is consisting of 155-degree curves configuration with 19 mm spacing between the parallel microstrip lines for same waveguide port position. This configuration of the proposed dielectric resonator is incorporated as stability element and matching components that known as dielectric matching for conditional stable and unconditional stable transistors at 5 GHz.
References
. Eroglu, A. 2010. Stabilization of Class E amplifiers with a diode network. AEU - International Journal of Electronics and Communications, 64(3), 224–230.
. Han, Y., & Perreault, D. J. 2006. Analysis and design of high efficiency matching networks. IEEE Transactions on Power Electronics, 21(5), 1484–1491.
. Grebennikov, A. 2005. RF and microwave power amplifier design. New York: McGraw-Hill Professional Engineering.
. Pozar, D. M. 2005. Microwave engineering. 3rd Edition. New York: Wiley.
. Lin, Y.-S., Wang, C.-C., & Lee, J.-H. 2014. Design and implementation of a 1.9-22.5 GHz CMOS wideband LNA with dual-RLC-branch wideband input and output matching networks. Microwave and Optical Technology Letters, 56(3), 677–684.
. Vimal, S. & Maheshwari, M. 2016. Design and performance improvement of a low noise amplifier with different matching techniques and stability network.International Journal of Engineering Research & Science (IJOER), 2(3), 1-10.
. Alimenti, F., Virili, M., Mezzanotte, P., Roselli, L., Rericha, V., Pokorny, M., Iorio, F., Gaddi, R. & Schepens, C. 2014. A RF-MEMS based tuneable matching network for 2.45 GHz discrete-resizing CMOS power amplifiers.Radioengineering, 23(1), 328-337.
. Fabbro, P. A. D. & Kayal, M. 2008. RF power amplifier employing a frequency tunable impedance matching network based on coupled inductors. ElectronicLetters, 44(19), 1131 -1132.
. Hoarau, C., Corrao, N., Arnould, J.-D., Ferrari, P., & Xavier, P. 2008. Complete design and measurement methodology for a tunable RF impedance-matching network. IEEE Transactions on Microwave Theory and Techniques, 56(11), 2620–2627.
. Iyer, M., & Shanmuganantham, T. 2017. Design of LNA for C band applications, in: IEEE International Conference on Circuits and Systems (ICCS), Thiruvananthapuram, India, 211-214.
. Veeranjaneyulu, M. & Anuradha, B. 2016. Design & simulation of radio frequency power amplifiers for high efficiency and without affecting linearity. International Journal on Recent and Innovation Trends in Computing and Communication, 4(8), 46-49.
. Madhura, P. J. & Savita, B. B. 2015. Efficient designing techniques for low noise amplifier, in: 22nd IRF International Conference, Pune, India, 106-108.
. Fallahnejad, M. & Alireza, K. 2014. Design of low noise amplifiers at 10 GHz and 15 GHz for wireless communications systems. IOSR Journal of Electrical and Electronic Engineering (IOSR-JEEE), 9(5), 47-53.
. Fallahnejad, M., Yasaman, N. & Alireza, K. 2015. Design and simulation of low noise amplifier at 10 GHz by using GaAs High Electron Mobility transistor. IOSR Journal of Electrical and Electronic Engineering (IOSR-JEEE), 10(5), 29-34.
. Lim, Y., Tang, H., Lim, S. & Park, J. 2014. An adaptive impedance-matching network based on a novel capacitor matrix for wireless power transfer. IEEE Transactions on Power Electronics, 29(8), 4403-4413.
. Senthilkumar, D., Uday, P. K. & Santosh, J. 2013. Design and comparison of different matching techniques for low noise amplifier circuit. International Journal Engineering Research and Applications (IJERA), 3(1), 403-408.
. Yu-na, S. & Geng, L. 2012. Design of a low noise amplifier of RF communication receiver for mine, in IEEE Symposium on Electrical & Electronics Engineering (EEESYM), Kuala Lumpur, Malaysia, 125-127.
. Gao, S. Wang, Z. & Chan-Wang, P. 2010. A novel RF tunable impedance matching network for correcting the tested result deviation from simulated result, in Proceedings of 2010 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE 2010), Port Dickson, Negeri Sembilan, Malaysia, 1 -4.
. Fuzy, C. & Zolomy, A. 2010. Design of broadband complex impedance-matching networks and their applications for broadbanding microwave amplifiers, in: 18th International Conference on Microwave Radar and Wireless Communications (MIKON), Vilnius, Lithuania, 1-4.
. Boughariou, M., Fakhfakh, M. & Loulou, M. 2010. Design and optimization of LNAs through the scattering parameters, in: 15th IEEE MediterraneanElectrotechnical Conference (MELECON), Valletta, Malta, 764-767.
. Khah, S. K., Singh, P., Rabra, S., Saxena R. & Chakarvarty, T. 2007. Broadband impedance matching technique for microwave amplifiers, in: IEEE Applied Electromagnetics Conference (AEMC), Kolkata, India, 1-4.
. Collado, A., Ramirez, F. & Suarez, A. 2004. Analysis and stabilization tools for microwave amplifiers. IEEE MTT-S Digest, 945-948.
. Jain, A., Hannurkar, P. R., Pathak, S. K., Biswas, A. & Srivastva, M. 2014. Improved performance of two-way power divider using dielectric resonator. Microwave and Optical Technology Letters, 56(4), 858-861.
. Su, Y., Zhao, H. L., Liu, X. F., & Huang, L. H. 2012. Design of the dielectric resonator oscillator with buffer amplifier. Advanced Materials Research, 433-440, 4536–4540.
. Yan, G. 2008. The design of the Ku band dielectric resonator oscillator, in:
International Conference on Electronic Packaging Technology & High Density
Packaging (ICEPT-HDP), Shanghai, China, 1 -3.
. Ullah, U. 2016. Study of inhomogeneous dielectric resonators for linearly/circularly
polarized microwave antenna applications. PhD Thesis, Universiti Sains Malaysia, MALAYSIA.
. Ullah, U., Ali, W. F. F. W., Ain, M. F., Mahyuddin, N. M. & Ahmad, Z. A. 2015. Design of a novel dielectric resonator antenna using MgTiO3-CaTiO3 for wideband applications. Materials and Design, 85, 396-403.
. Ullah, U., Ain, M. F., Othman, M., Zubir, I., Mahyuddin, N. M., Ahmad, Z. A. & Abdullah, M. Z. 2014. A novel multi-permittivity cylindrical dielectric resonator antenna for wideband applications. Radioengineering, 23, 1071-1076.
. Rogers Cooperation. 2011. RO4000 Series High Frequency Circuit Materials,
Advanced Connectivity Solutions, Available https://www.rogerscorp.com/documents/726/acm/RO4000-Laminates---Datasheet.pdf.
. Mahyuddin, N. M. 2006. Design and implementation of a 10 GHz dielectric
resonator oscillator. Master Thesis, Universiti Sains Malaysia, MALAYSIA.
. Marulanda, J. I., Lina. R. A. A., Carvalho, M. C. R., Almeida, A. F. L., Sombra, A. B. S. & Demenicis, L. S. 2009. Characterization of dielectric properties of screen-printed MgTiO3-CaTiO3 composite thick films in the microwave frequency range, in: IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), Belem, Brazil, 211 -214.
. Mahyuddin, N. M., Ain, M. F., Hassan, S. I. S. & Singh, M. 2006. A 10 GHz PHEMT dielectric resonator oscillator, in: Proceedings of the IEEE International RF and Microwave Conference, Putrajaya, Malaysia, 26-30.
. Hewlett-Packard. 1997. 2-18 GHz Ultra Low Noise Pseudomorphic HEMT (ATF-36077), Technical Data, Available
www.hp.woodshot.com/hprfhelp/4_downld/products/xrs/atf36077.pdf.
. Fujitsu Semiconductor. 1998. FLC053WG Datasheets: C-band Power GaAs FETs, Available https://www.datasheets360.com/pdf/7214091158553669565.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.